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Abstract The recent availability of small and low-cost
sensor carrying unmanned aerial systems (UAS, com-
monly known as drones) coupled with advances in
image processing software (i.e., structure from motion
photogrammetry) has made drone-collected imagery a
potentially valuable tool for rangeland inventory and
monitoring. Drone-imagery methods can observe larger
extents to estimate indicators at landscape scales with
higher confidence than traditional field sampling. They
also have the potential to replace field methods in some
instances and enable the development of indicators not
measurable from the ground. Much research has already
demonstrated that several quantitative rangeland indica-
tors can be estimated from high-resolution imagery.

Developing a suite of monitoring methods that are use-
ful for supporting management decisions (e.g., repeat-
able, cost-effective, and validated against field methods)
will require additional exploration to develop best prac-
tices for image acquisition and analytical workflows that
can efficiently estimate multiple indicators. We embed-
ded with a Bureau of Land Management (BLM) field
monitoring crew in Northern California, USA to com-
pare field-measured and imagery-derived indicator
values and to evaluate the logistics of using small
UAS within the framework of an existing monitoring
program. The unified workflow we developed to mea-
sure fractional cover, canopy gaps, and vegetation
height was specific for the sagebrush steppe, an ecosys-
tem that is common in other BLM managed lands. The
correspondence between imagery and field methods
yielded encouraging agreement while revealing system-
atic differences between the methods. Workflow best
practices for producing repeatable rangeland indicators
is likely to vary by vegetation composition and phenol-
ogy. An online space dedicated to sharing imagery-
based workflows could spur collaboration among re-
searchers and quicken the pace of integrating drone-
imagery data within adaptive management of
rangelands. Though drone-imagery methods are not
likely to replace most field methods in large monitoring
programs, they could be a valuable enhancement for
pressing local management needs.
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Introduction

Rangeland inventory and monitoring (I & M) data, used
to evaluate ecosystem function and successional states,
are important for adaptive management of public and
private rangelands (Allen et al. 2017; Kendall and
Moore 2012; Mitchell 2010). The Bureau of LandMan-
agement’s (BLM) assessment, inventory, and monitor-
ing (AIM) strategy is an I & M program intended to
provide long-term data on the status and trend of land
health (biotic integrity, soil and site stability, hydrologic
function) across all BLM managed lands in the Ameri-
can West (Taylor et al. 2014; Toevs et al. 2011). AIM
uses standardized field-data collection methods, and
randomized (i.e., probability-based) sampling designs
to infer the status and trend of rangeland health indica-
tors across reporting areas that could include grazing
allotments, watersheds, or entire field offices. However,
in landscape units with heterogeneous or patchy vege-
tation characteristics, a field sampling approach that
observes only a small fraction of the inference area (as
many field-based monitoring programs do) may esti-
mate indicator values and their change with low confi-
dence (Booth and Cox 2011).

The recent availability of small and low-cost
sensor carrying unmanned aerial systems (UAS,
commonly known as drones) along with the codi-
fication of piloting and airspace rules has made
drone-collected imagery a potentially valuable tool
for range inventory and monitoring. Small drones
(< 5 kg) can now be easily brought into the field
and deployed to image dozens to hundreds of
hectares at spatial resolutions capable of measuring
fine-scale vegetation and soil indicators. They hold
the promise of observing larger extents and esti-
mating I & M indicators at landscape scales with
higher confidence than traditional field sampling.
Drone imagery methods also have the potential to
replace field methods in some instances (Cunliffe
et al. 2016; Gillan et al. 2017; Olsoy et al. 2018),
and enable the development of indicators not mea-
surable from the ground (Ludwig et al. 2007;
Rango et al. 2009).

Research has shown that several quantitative range-
land indicators can be estimated from high-resolution
imagery (< 10 cm ground sampling distance (GSD)).
Fractional cover estimates have been demonstrated
using classification algorithms (Baena et al. 2017;
Cruzan et al. 2016; Laliberte et al. 2010a, b, 2011a, b;

Laliberte and Rango 2011; Lu and He 2017; McGwire
et al. 2013) and visual interpretation (Booth and Cox
2008, 2009; Breckenridge et al. 2011; Duniway et al.
2012; Hardin et al. 2007; Karl et al. 2014; Moffet 2009;
Seefeldt and Booth 2006) with high success for plant
functional types and some species identification. From
high-resolution imagery, it is possible to estimate large
inter-canopy gaps (Karl et al. 2012; Rango et al. 2009)
as well as vegetation heights and structure (Cunliffe
et al. 2016; Gillan et al. 2014; Jensen and Mathews
2016; Olsoy et al. 2018; Swetnam et al. 2018).

However, for drone-based methods to gain
widespread use for I & M, including integration
with existing programs, they need to be repeatable,
cost-effective, and validated against current field
methods. Because best practices for estimating a
suite of I & M indicators will vary by vegetation
composition and phenology, it seems unlikely and
perhaps unproductive to pursue a standard set of
protocols as have been developed for field
methods (e.g., AIM core indicators; MacKinnon
et al. 2011). Instead, image acquisition and analyt-
ic workflows will need to be customized by eco-
system including timing of data collection condu-
cive to detecting the I & M features of interest
(Hunt et al. 2003; Lass and Calihan 1997). For the
sake of efficiency, workflows should be designed
to estimate multiple indicators when possible.

In this paper, we present the results of a pilot program
to test the use of image products collected from small
UAS to produce multi-indicator rangeland I & M data.
For this test, we embedded with a BLM field monitoring
crew in Northern California, USA to compare field-
measured and imagery-derived indicator values and to
evaluate the logistics of using small UAS as a field-
deployed tool for rangeland monitoring. We sought to
develop image acquisition and processing methods spe-
cific for the sagebrush steppe, an ecosystem that is
common in other BLM managed lands. Accordingly,
the methods described in this paper could be applied to
other similar vegetation communities.

Our objectives were to (1) develop a unified
workflow to measure three common rangeland indica-
tors from drone imagery: fractional cover of plant func-
tional types, canopy gaps, and vegetation heights; (2)
assess agreement between imagery-based indicator
values and field-measured values; and (3) investigate
how fractional cover estimates differed between two
different sensor types.
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Material and methods

Study area

Field research was conducted at the Applegate and
Eagle Lake field offices in the BLM’s Northern Califor-
nia District (NCD), in northeastern California, and
across the border into Nevada (Fig. 1). The combined
land area of both field offices is 11,165 km2 and consists
primarily of semi-arid sagebrush steppe, scattered
mountain ranges reaching elevation of 2500 m, and
extensive desert playas devoid of vegetation. Mean
annual precipitation ranges from 25 to 35 cm with
75% occurring between October and March. Typically,
the warmest month is July with average temperature
highs of 31.5 °C and lows of 10.4 °C. January is typi-
cally the coldest month of the year with average tem-
perature highs of 4.7 °C and lows of − 6 °C. A primary
use of BLM lands in the NCD is cattle grazing. Greater
sage-grouse (Centrocercus urophasianus), a species of
conservation concern, has critical habitat within the
district (US Bureau of Land Management 2007). The
district has been heavily invaded by cheatgrass (Bromus
tectorum) which has led to large range fires such as the
Rush Fire in 2012. There are also large populations of
wild horses and burros.

Field data collection

Three-person crews collected field data following the
protocols of the BLM’s AIM strategy (Herrick et al.
2017). A total of 122 plots were visited and sampled
in the NCD between May 22 and September 11, 2017.
At each plot, three 25-m transects were established
radiating out from the plot’s center to form a “spoke”
plot design, oriented at magnetic 0°, 120°, and 240°,
respectively (Fig. 2). The transects started 5 m away
from the plot center where equipment was stored and a
soil pit dug to determine soil type and ecological site.

Along each transect, fractional cover was estimated
using the line-point intercept method (Herrick et al.
2017). Every 0.5 m along the transect, an observer
dropped a 1-mm-diameter metal pin to the ground with-
out directing its landing location. Vegetation intercepted
by the pin was recorded to species. The “top-hit” (i.e.,
foliar cover) was recorded along with any lower vege-
tation touched by the pin. Ground surface was recorded
for each pin drop as bare soil, rock, litter, or biological
crust regardless of whether vegetation was also

encountered. Each transect had 50 observations, and
transects were aggregated to form a plot sampling unit
with a total of 150 observations. To facilitate compari-
son with imagery fractional cover, we used just the “top-
hit” vegetation to calculate cover. Cover (as a propor-
tion) was calculated by dividing the number of observa-
tions of a given cover class by the total number of
observations.

Vegetation heights were measured along the same
transects at 2.5-m intervals (30 total measurements per
plot). The height and species of the tallest herbaceous
and woody vegetation, encountered within a 15-cm
radius of a rod, was recorded to the nearest cm
(Herrick et al. 2017). This included any dead or dormant
plant. For the purposes of this study, only woody vege-
tation heights were compared with drone imagery.

Inter-canopy gaps were measured along the three
transects following Herrick et al. (2017). Field crews
recorded the distances (in cm) between vegetation can-
opies (woody or herbaceous) with only gaps > 25 cm
being recorded. The canopy gap indicator was reported
as the percentage of the total transect length for gap sizes
of 25–50 cm, 51–100 cm, 101–200 cm, and > 200 cm as
recommended by Herrick et al. (2017).

Developing a unified workflow for multiple indicators

Designing the acquisition and image processing
workflow tailored to the NCD study area began with
an extensive literature review of previous studies using
very high-resolution imagery to estimate fractional cov-
er and vegetation heights (Fig. 3). While these studies
present varied methods, collectively, they represent the
myriad choices for turning very high-resolution imagery
into quantitative estimates of ecosystem indicators.
Breaking down each paper’s workflow into its compo-
nent parts helped to reveal the popularity of choices for
each decision and identify gaps in research (i.e., viable
choices that have not been tested). In addition, we
documented (in graphical form) the step-by-step instruc-
tions to produce each of the indicators (Fig. 4).

UAS image acquisition

We acquired UAS imagery at 16 AIM plots in NCD
between June 16 and July 1, 2017 (Fig. 1; supplemental
Table A1). At 12 of the plots, we collected the imagery
2–5 days after the field crews had collected their data.
For the remaining four plots, we embedded with the
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field crew and acquired the imagery immediately before
the field measurements. Accessing all of the plot loca-
tions required off-trail hiking across rugged terrain with
the drones and associated equipment carried in back-
packs. We chose the plots to cover a range of ecological
sites and vegetation communities in coordination with
the field crew’s monitoring schedule. Drones were op-
erated under a Part 107 small UAS license with a special
use permit to conduct air operations over BLM land.

We acquired aerial imagery with Phantom 3 Profes-
sional and Phantom 4 quad-rotor drones (https://www.
dji.com). Both drones have nearly identical 12-
megapixel integrated RGB sensors (Table 1). We also
employed a Parrot Sequoia sensor (https://www.parrot.
com), which we mounted on the Phantom 3. The
Sequoia is a very small multi-spectral sensor with green,
red, red-edge, and near-infrared (NIR) bands (Table 1).
With its own external power supply, global navigation

Fig. 1 Study area at the Northern California District (NCD) of the
Bureau of LandManagement. BLM land is highlighted in tan. Red
circles indicate AIM plot locations where only Phantom imagery

was collected, while blue circles are plot locations where Phantom
and Sequoia imagery were acquired. The background imagery is
from Landsat 8, acquired June 2017
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satellite system, and sensor-triggering capabilities, the
Sequoia operated independently from the drone.

Autonomous grid pattern missions were pro-
grammed in Altizure v 3.0 (https://next.altizure.com).
We flew one mission to collect nadir (vertical) imagery
and four missions to collect 30° oblique images because
prior research has shown that the incorporation of
oblique images into photogrammetry can improve scene
geometry (James and Robson 2014). We collected im-
agery 40 m above ground level (AGL) at each plot,
yielding GSD of 1.5 cm for the Phantom imagery and
3.7 cm for the Sequoia imagery (Table 1). This resolu-
tion was chosen because it was determined to be fine
enough to detect the presence of bunch grasses while

limiting excessive processing time typical of finer-scale
data (see Gillan et al. 2019). Sequoia imagery was
collected on only seven plots due to a manufacturer
defect that caused the sensor to overheat (see Fig. 1 for
plot locations and Table A1 for plot details). At each
plot, we collected between 210 and 280 images per
sensor covering an area slightly larger than the AIM
plot (~ 1 ha). Radiometric calibration of the drone-
collected images was deemed unnecessary because all
classification, analysis, and interpretation was conduct-
ed within individual plots using images that were col-
lected during a single drone flight.

Though the Phantom drones and Sequoia sensor
record geographic coordinates of each acquired image

Fig. 2 Data for this study were collected at field plots consisting
of three 25-m transects (black lines). Shown here is plot Tablelands
440. a Orthomosaic made with Phantom RGB imagery. b False-

color composite orthomosaic made with Sequoia multi-spectral
imagery. c An orthomosaic thematically classified into plant func-
tional types, d Woody vegetation heights
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with their onboard global navigation satellite systems
(GNSS), they are typically accurate to only a few meters
horizontally, and several meters vertically. Because we
visited these remote plots only one time, it was not
practical to install and survey ground control points
(GCPs) to reference the scenes. To overcome this limi-
tation, we placed a single 8-m long scale-bar in the
center of each plot instead of surveying GCPs (sensu
Carbonneau and Dietrich 2016). The scale-bar consisted
of two aerial targets on the ends of an 8-m collapsible
rod. Informing the photogrammetry software of an

object of known length (i.e., scale-bar) ensures correct
horizontal and vertical dimensions for the entire image
model, enabling accurate estimates of fractional cover
and vegetation heights (Carbonneau and Dietrich 2016).
At a test plot in southern New Mexico, we found scale-
bar reference point clouds to be within 2 cm horizontally
and 2.5 cm vertically of point clouds using a network of
surveyed ground control points. Using this approach,
however, the image products may be systematically
shifted both horizontally and vertically compared to
their true location (i.e., georeferencing error).

Fig. 3 Workflow decisions based on a review of 29 published
studies using high-resolution aerial photography (drone and
manned aircraft) to estimate vegetation fractional cover and height.

The focus was on rangeland type environments (e.g., grasslands,
shrublands) but also included some research in crop systems. The
options used in this project are highlighted with red boxes
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Photogrammetry and image product creation

We used structure-from-motion photogrammetry (SfM)
software Agisoft Photoscan v. 1.3.5 (www.agisoft.com)

to make point clouds and orthomosaics of each plot and
sensor separately. The general SfM process of making
point clouds is well-documented (Eltner et al. 2015;
Smith et al. 2015; Snavely et al. 2008; Westoby et al.

Fig. 3 (continued)
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2012), so it will be abbreviated here. All image process-
ing was carried out on a Windows 10 machine with two
Intel Xeon CPUs (2.4 GHz; 16 logical processors each),

two EVGA GeForce GTX 1080 video cards, and 256
GB RAM. We did “high quality” initial alignment and
self-calibration using the latitude, longitude, and

Fig. 4 Step-by-step workflow to calculate vegetation fractional cover by plant functional types, canopy gaps, and vegetation heights from
orthomosaics and point clouds
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elevation stamped on each image. To improve model
scaling, we referenced each plot with a single 8-m scale-
bar (see Carbonneau and Dietrich 2016). We estimated
the scale-bar length accuracy to be within 5 cm. Follow-
ing the recommendation of James et al. (2017), we
optimized parameters focal length (f), principal point
coordinates (cx, cy), radial distortion (k1, k2), and tan-
gential distortion (p1, p2), and also for rolling shutter
effect present in Phantom sensors (Vautherin 2016).
Next, we used the “gradual selection” tool to iden-
tify and remove low-quality sparse points with the
following criteria: reprojection error > 0.3 pixels,
reconstruction uncertainty > 13, and projection er-
ror > 10. The sparse cloud was optimized (bundle
adjustment) after each removal of low quality
points. For dense point cloud reconstruction, we
used just the nadir images. Extensive testing found
that nadir only dense point clouds were nearly

identical to nadir + all oblique images with reso-
lution of 1.5 cm. Using only nadir images greatly
reduced the processing time from multiple days to
a few hours per plot. Point clouds were generated
at “ultra high” density which attempted to generate
a point at every pixel. Point cloud densities were
typically 1000–3000 points·m−2.

Orthomosaic generation required a slightly different
workflow. Experience has shown that very detailed
point clouds and subsequent digital elevation models
(DEMs) create orthomosaics with substantial stretching
and artifacts. Accordingly, we generated a dense point
clouds with low density followed by the creation of low-
resolution DEMs (6–10 cm depending on the scale of
the imagery) used in the orthorectification process.
Orthomosaic spatial resolutions were 1.5 cm for Phan-
tom imagery (Fig. 2a) and 3.7 cm for Sequoia imagery
(Fig. 2b).

Table 1 Phantom 3 and 4 camera and Parrot Sequoia sensor specifications

Spectral characteristics Sensor pixels Shutter Radiometric resolution Image
format

Image
overlap

GSD at
40 m AGL

Phantom
3 and 4

Red, green, blue 4000 horizontal × 3000
vertical (12 mpx)

Rolling with
33 ms
readout

8 bit (256 BVs) jpeg 75–80% 1.5 cm

Parrot Sequoia Green
530–570 nm
Red
640–680 nm
Red-edge
730–740 nm
NIR
770–810 nm

1280 horizontal × 960
vertical (1.2 mpx)

Global 10 bit (1024 BVs)
stored as 16 bit
(65,536 BVs)

Tiff 75–80% 3.7 cm

Fig. 5 Image features used to
predict supervised classes in c50
decision tree classification

Environ Monit Assess         (2020) 192:269 Page 9 of 20   269 



www.manaraa.com

UAS imagery indicator generation

Classifying fractional cover

Prior to orthomosaic classification, we simplified the
images through segmentation (i.e., grouping similar
contiguous pixel together into objects; Burnett and
Blaschke 2003). With very high spatial resolution, clas-
sification on segments (or objects) have been shown to
be more accurate than pixel-based classifications that
suffer from “salt & pepper” heterogeneity within fea-
tures such as shrub canopies (Laliberte et al. 2011a).
Segmentation also facilitates the use of non-color traits
such as texture, size, and shape to distinguish classes,
while pixel-based classifications can generally only use
spectra (Navulur 2007). Using the “segment mean shift”
tool in ArcMap 10.5 (https://www.esri.com), we
attempted to group pixels into real features on the
landscape (e.g., one segment for one shrub). This was
quite difficult to achieve so most objects such as shrubs
or large rocks often contained multiple segments.

The spectral features we used to classify the Phantom
imagery were (Fig. 5) blue mean and standard deviation
(SD), green mean and SD, red mean and SD, and green
leaf algorithm (GLA; G�2−R−B

G�2þRþB; Louhaichi et al. 2001)

mean and SD. Additionally, we used the following
spatial features for classification of image segments:
segment pixel count, rectangularity, and compactness.
For rectangularity, values range from 0 to 1, with 1
being a rectangle. Compactness is the degree to which
a segment is circular with values ranging from 0 to 1,
where 1 is a circle. For Sequoia imagery, we included
the red-edge and NIR bands and used normalized dif-
ference vegetation index (NDVI) instead of the green
leaf algorithm. We calculated feature values for each
segment.
Noticeably absent from the list of features is canopy

heights which are frequently used in object-based clas-
sifications (Baena et al. 2017; Cruzan et al. 2016). In this
workflow, canopy height models were created after
vegetation classification and thus could not be used as
a feature in the classification (details in ‘Vegetation
Heights’ section).

The final classes were annual herb/grass, perennial
herb/grass, woody, bare-ground, and shadow in some
cases (Fig. 5). The bare-ground class included bare-soil,
rock, and lichen. For classification training, we created
individual point shapefiles for each class.We placed 50–

100 points per class on the segmented orthomosaics
where we opportunistically found representative sam-
ples. Identifying specific classes was aided by line-point
intercept field data and ground photos. At several plots
(West Ft. Sage197, Tablelands 440, Shaffer 243, Twin
peaks 236, Crest 436, Snowstorm441, and Lower Lake
437), we omitted perennial herb/grass as a class because
it either did not occur in the plot or the specimens were
too small and indistinguishable to be useful for training.

We used R package c50 (Kuhn and Quinlan 2017) to
classify the orthomosaics. The algorithm, which is an R
version of SEE5 (www.rulequest.com/see5-info.html),
is a machine learning decision tree used to predict
discrete classes. We specified adaptive boosting with
20 trials and disabled winnowing. We used 75% of the
training samples to train the classifier and withheld 25%
for validation (see Fig. A1 complete R code). C50
outputs confusion matrices and information to assess
the importance of predictor features (see Table A2 for
feature importance and Table A3 for aggregated
confusion matrix). We calculated fractional cover as
the number of pixels per class as a proportion of total
classified pixels (Fig. 2c).

Canopy gaps

From the classified orthomosaics, we calculated canopy
gaps following the general methods presented in Karl
et al. (2012). First, we digitized the three transects using
markers (iron-cross targets) located at the ends as a
reference. We retained the bare-ground class and re-
moved annual herb/grass, perennial herb/grass, and
woody classes. We then converted the bare-ground ras-
ter into vector polygons and used the “intersect” tool in
ArcMap to identify the parts of lines crossing the bare-
ground polygons. We calculated the length of each line
and created histograms for the proportion of total line
length having lengths of 25–50 cm, 51–100 cm, 101–
200 cm, and > 200 cm.

Vegetation heights

We calculated vegetation heights using only the Phan-
tom RGB imagery point clouds because the coarser
Sequoia imagery would produce less detailed 3D recon-
structions. Using the “classify ground points” tool in
Agisoft, we identified points representing the ground.
This is a type of maximum local slope filter
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(Montealegre et al. 2015) where the lowest elevation
point within a user defined grid cell is assumed to be the
ground. All additional ground points were identified
based on a user defined maximum angle and vertical
distance from the origin ground point. For each plot, we
specified a grid cell size of 2 m with a max angle of 9°
and max distance of 10 cm.

In ArcMap, we converted the original point clouds into
digital surface models (DSMs) with a 5-cm cell size by
assigning the cell value as the highest elevation point
and using natural neighbor interpolation to estimate
values for cells with no points. Digital terrain models
(DTMs) were created similarly with ground-only point
clouds. Using “raster calculator,” we subtracted the
DTM from the DSM on a cell-by-cell basis to create a
canopy height model (CHM). In some plots, the pres-
ence of large boulders were appearing in the CHMs. To

remove the boulders height data, we identified and
deleted any height measurements that were not classi-
fied as vegetation.

Though this study specifically looked at woody vege-
tation heights, we chose not to filter herbaceous vegeta-
tion out of the CHM. The spatial resolution of the drone
imagery was generally too coarse to detect herbaceous
vegetation heights (see Gillan et al. 2019), especially for
species such as cheatgrass (Bromus tectorum) and
squirreltail (Elymus elymoides) with low-stature growth
forms. Analysis of the CHMs showed very little if any
registered heights concurrent with the presence of her-
baceous vegetation. Finally, we used the “aggregate”
tool to compute the highest height value within a 30 ×
30 cm grid cell on the CHMs (Fig. 2d) to more closely
match the field method of finding the highest part of the
plant within a 15-cm radius of the rod.

Fig. 6 Scatter plots and linear regression (dotted lines) show the comparison between field and Phantom imagery estimates of fractional
cover (n = 16). Solid gray lines represent a 1:1 agreement

Table 2 Fractional cover for field data and Phantom RGB imagery. Standard errors are shown in parenthesis

Data Annual herb/grass Perennial herb/grass Woody Bare-ground Shadow

Mean Field 0.37 (0.05) 0.06 (0.01) 0.12 (0.02) 0.43 (0.04) 0

Phantom 0.39 (0.08) 0.05 (0.02) 0.15 (0.02) 0.36 (0.07) 0.017

Difference 0.02 (0.04) 0.00 (0.02) 0.03 (0.01) − 0.06(0.04) 0.017

Absolute mean Difference 0.13 (0.02) 0.05 (0.01) 0.04 (0.00) 0.14 (0.02) 0.017

Environ Monit Assess         (2020) 192:269 Page 11 of 20   269 



www.manaraa.com

Comparison between field and imagery indicators

We assessed agreement between field and imagery in-
dicator values using the plot as the sample unit. Imagery
indicator values for fractional cover and vegetation
heights were calculated within rectangular polygons
along each field transects’ location approximately
0.33mwide to contain spatial co-registration errors with
field measurements. Canopy gap values were estimated

along the three transects. For each indicator (fractional
cover, canopy gaps, vegetation heights), we assessed
method agreement by comparing the mean values (with
95% confidence intervals) across all 16 plots. Mean
differences (which include signed differences) were
useful for showing bias toward overestimate or under-
estimate indicator values, while absolute mean differ-
ences (which eliminate signed differences) were com-
puted to show true departure between methods.

Fig. 7 Fractional cover scatter plots and regression lines showing linear relationships between Phantom RGB imagery and field methods
(n = 7), and Sequoia multi-spectral imagery and field methods (n = 7). Solid lines represent 1:1 agreement

Table 3 Comparing fractional cover estimated with Phantom RGB and Sequoia multi-spectral imagery (n = 7). Standard errors shown in
parenthesis

Data Annual herb/grass Perennial herb/grass Woody Bare-ground Shadow

Mean Field 0.37 (0.09) 0.08 (0.03) 0.08 (0.02) 0.44 (0.08) 0

Phantom 0.36 (0.14) 0.05 (0.03) 0.10 (0.02) 0.44 (0.12) 0.01

Sequoia 0.35 (0.13) 0.04 (0.02) 0.09 (0.02) 0.46 (0.11) 0.02

Mean difference with field methods Phantom − 0.00 (0.07) − 0.02 (0.01) 0.01 (0.01) − 0.00 (0.07) 0.01

Sequoia −0.01(0.06) − 0.03 (0.01) 0.01 (0.01) 0.01 (0.06) 0.02

Absolute mean difference with field methods Phantom 0.14 (0.04) 0.02 (0.01) 0.03 (0.00) 0.14 (0.03) 0.01

Sequoia 0.13 (0.04) 0.03 (0.01) 0.02 (0.00) 0.11 (0.04) 0.02
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Additionally, we performed least-squares regression and
calculated coefficients of determination (R2 values) to
describe linear relationships between methods. For

vegetation heights, we additionally comparedmaximum
and standard deviation and the proportion of observa-
tions within eight histogram bins. On a subset of plots

Fig. 8 Canopy gaps comparison between field measurements and
imagery. a Bars indicate mean proportion of transect with associ-
ated gap sizes. Error bars indicate 95% confidence intervals. b

Scatterplots and linear regression (dotted lines) comparing field
and imagery estimates of canopy gaps. Solid lines represent 1:1
agreement
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(n = 7), we compared fractional cover agreement be-
tween Phantom and Sequoia multi-spectral imagery.
Due to the relatively small sample sizes, we did not

separate analysis by ecological site which is typically
done for I & M data interpretation (see Karl and Herrick
2010).

Table 4 Comparison of canopy gap data as measured by field and imagery (Phantom) methods

Data 25–50 cm 51–100 cm 101–200 cm > 200 cm All gaps > 25 cm

Mean Field 0.07 (0.00) 0.09 (0.01) 0.11 (0.02) 0.21 (0.06) 0.49 (0.06)

Phantom 0.03 (0.00) 0.04 (0.01) 0.071 (0.01) 0.18 (0.05) 0.33 (0.06)

Difference − 0.04 (0.00) − 0.04 (0.01) − 0.04 (0.01) − 0.03 (0.03) − 0.16 (0.04)

Phantom/field 0.42 0.44 0.63 0.85 0.67

Absolute mean Difference 0.04 (0.00) 0.04 (0.00) 0.06 (0.01) 0.08 (0.02) 0.16 (0.04)

Values represent the proportion of transects within each gap class. Standard errors are shown in parentheses

Fig. 9 Agreement between field and imagery methods of estimat-
ing vegetation heights. a Bar graphs show mean and maximum
vegetation heights across all plots with 95% confidence intervals
(n = 16). b Histogram showing proportion of values within height
bins with 95% confidence intervals. c Scatterplot and linear

regression for mean height. d Scatterplot and linear regression
for height standard deviation. e Scatterplot and linear regression
(dotted lines) for maximum vegetation heights. Solid lines repre-
sent 1:1 agreement
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Results

Method agreement—fractional cover

The woody vegetation cover class showed the strongest
linear relationship between field and image measure-
ments (R2 = 0.82; Fig. 6), followed by annual herb/
grass (R2 = 0.79), bare-ground (R2 = 0.69), and perenni-
al herb/grass (R2 = 0.24). Mean fractional cover across
all plots was similar between field and imagery esti-
mates for each of the four classes (Table 2). Mean
method differences ranged from as small as − 0.009
(perennial herb) to as large as − 0.062 (bare-ground).
Bare-ground had the largest absolute mean difference
(0.145), followed closely by annual herb/grass (0.134).
Perennial herb/grass and woody had absolute mean
differences of 0.052 and 0.047, respectively. Indicator
value variation between plots was higher (i.e., larger
standard errors) for imagery compared with field
methods for each of the cover classes.

Fractional cover sensor comparison

We found minimal differences in linear relationships
between the Phantom RGB camera and Sequoia multi-
spectral sensor in terms of fractional cover agreement
with field measurements (Fig. 7). Similarly, average
fractional cover and cover differences with field
methods were < 3% different for each cover class
(Table 3).

Method agreement—canopy gaps

Proportion of inter-canopy gaps were generally
underestimated for each size class (Fig. 8a; Table 4).
The greatest relative underestimations (proportional to
the mean value) occurred at small gaps sizes (e.g., 25–
50 cm) and steadily shrank as gap sizes increased.
Variance (illustrated with confidence intervals) between
field and imagery estimates was very similar. Linear
relationships between field and imagery improved as
the size of the gaps increased (Fig. 8b).

Method agreement—vegetation heights

Imagery methods underestimated mean vegetation
heights by 18 cm on average and underestimated max-
imum vegetation heights on average by 8 cm (Fig. 9a).
Regarding the proportion of height observations within

histogram bins, nearly 50% of imagery observations
were within the 4–14 cm bin, while field methods had
only 14% of observations within that range (Fig. 9b).
Conversely, there was a much higher proportion of field
observations within the height bins from 35 to 54 cm
(29% v. 11%), 55–74 cm (8% v. 3%), and 75–94 cm
(13% v. 0%). The linear relationship of mean heights
was weak (R2 = 0.12), mostly due to one plot with a
dead woody plant that was too thin to be detected with
imagery (Fig. 9c). Removing this one plot from analysis
improved the linear relationship to R2 = 0.46. Height
standard deviation had R2 = 0.47 (Fig. 9d) and maxi-
mum height had R2 = 0.34 (Fig. 9e). Mean and maxi-
mum vegetation height were overpredicted (compared
to field measures) at some plots because tall woody
plants were not encountered with the field methods.

Discussion

Fractional cover

Because imagery and field methods of observing vege-
tation cover have inherent mechanical differences (i.e.,
pin drops v. classified pixels) and possible co-
registration error, perfect agreement between indicator
values is not expected. Image-based measures should
be, however, strongly related to field measures to be
considered a reliable tool worth adopting for rangeland
monitoring. Though we found strong relationships be-
tween imagery and field estimates of fractional cover,
some classes could be improved with small workflow
adjustments detailed in the following two paragraphs.

It was difficult to find useable training samples for
perennial herb/grass because there were so few of them
to begin with and because potential samples were often
too small and indistinguishable from adjacent pixels.
This often led to omitting the class or poor results
(e.g., under- or over-prediction). The imagery resolution
was generally too coarse to identify and classify peren-
nial bunchgrasses found in this study area. We would
recommend imagery ≤ 1 cm GSD to identify individual
bunchgrasses and other herbaceous plants as demon-
strated in other projects (Cunliffe et al. 2016; Fraser
et al. 2016; Gillan et al. 2019). Even at this fine resolu-
tion, however, separating herbaceous species from each
other will be challenging (Gearhart et al. 2013; Laliberte
et al. 2010b; Lu and He 2017).
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Though the annual herb/grass and bare-ground classes
had strong linear relationships with field methods, they
had the highest mean absolute differences. The classifi-
cations often confused annual herb/grass (mostly cheat-
grass) and bare-ground, a significant problem given the
concern of cheatgrass expansion in the district. Confu-
sion was primarily caused by cheatgrass that had
senesced to a yellow/brown color making it difficult to
separate from bare-ground. Separation may have been
better in the spring while the cheatgrass was still green
and easily distinguished from bare-ground. Imagery
collected in the spring, however, may not capture other
annuals such as prickly lettuce (Lactuca serriola) or
perennials such as bottlebrush squirrel tail (Elymus
elymoides).
Vegetation phenology is critical to identify species or

functional groups within imagery, more so than identi-
fying the same features with field methods (Hunt et al.
2003; Lass and Calihan 1997). As with any image
classification, distinguishing features of interest is high-
ly dependent on the spectral and spatial uniqueness of
the classes (Laliberte and Rango 2011). Integrating
drone imagery will require a re-thinking of when mon-
itoring occurs to maximize feature detectability. De-
pending on the objectives of the inventory and monitor-
ing, multiple acquisitions may be required in a year.

We found little difference in fractional cover agree-
ment between the Phantom RGB camera and the Parrot
Sequoia multi-spectral sensor. Other research has dem-
onstrated the ability of RGB imagery to successfully
classify cover (Cruzan et al. 2016; Laliberte et al.
2010a; Meng et al. 2018). In addition to lower cost,
RGB sensors generally offer higher spatial resolution
compared with multi-spectral sensors, an advantage for
identifying small plants and generating detailed point
clouds. In theory, multi-spectral sensors offer additional
bandwidth from which to separate species based on
spectral differences (Laliberte et al. 2011a), though we
found no discernible advantage in this study. Addition-
ally, multi-spectral sensors can also be radiometrically
calibrated to reflectance values which could improve
consistency of repeat image classifications and aid the
development of spectral libraries. Other sensors includ-
ing LiDAR and hyperspectral have been demonstrated
on drones to characterize dryland vegetation cover and
structure (Mitchell et al. 2012; Sankey et al. 2017). Their
data may help to distinguish more cover classes than
RGB and multi-spectral. However, the additional cost

and technical challenges of these sensors may make
them less desirable for mass adoption and reducing
monitoring costs.

Canopy gaps

Similar to our findings, Karl et al. (2012) found that
correlations between imagery and field estimates im-
proved as the gap sizes increased, and gaps > 50 cm
were reliably estimated from imagery in a variety of
plant communities. In this research, consistent underes-
timation of canopy gaps at each size class had two main
causes. The first was misclassifying bare-ground as
annual herb/grass. The second (and less frequent) cause
was scale (specifically grain) differences between field
and imagery observations. The imagery, and subsequent
grouping of pixels into objects, could not see small
diameter branches or sparse vegetation the field observ-
er could see. Take, for example, a group of shrubs close
to each other. The imagery classification may perceive
no gaps between the shrubs, while the field observer
may observe that there are in fact gaps of at least 25 cm
between the branch canopies.

Canopy gaps are an example of an indicator that has
the potential to be improved instead of simply replicated
by drone imagery. Field-based measures of canopy gaps
are a 1-dimensional representation of erosional force
connectivity that is typically integrated over multiple
directions in the plot to provide a composite value
(Webb et al. 2014). Drone imagery could open up more
meaningful 2-D or 3-D measurements of the same phe-
nomenon. For example, with drone-based classifica-
tions, the size and configuration of bare ground patches
parallel to the slope (indicator of water erosion potential)
could be separated from the effects of bare ground
patches in line with prevailing winds (indicator of wind
erosion potential). Similarly, Ludwig et al. (2007) used
two-dimensional information on bare ground distribu-
tion to create an index related to a site’s ability to retain
resources (i.e., a “leakiness” index).

Vegetation heights

The differences between imagery and field estimates of
woody vegetation heights were caused primarily by the
mechanics of each method, and additionally by imper-
fect referencing (i.e., scale-bar). For mean height, the
field method averaged 30 measurements of the tallest

  269 Page 16 of 20 Environ Monit Assess         (2020) 192:269 



www.manaraa.com

part of the plant that was encountered within a 15-cm
radius of a rod placement. Most of these observations
were high up on the plant. The point cloud/CHM
methods observed all aspects of the plant, from the
crown to the base. Naturally, numerous observations
on the lower part of the plant brought down the average.
The maximum vegetation height in a plot was generally
underestimated by the imagery due to poorly modeling
plant extremities that were too fine or small to detect.
This is a well-known trait of photogrammetric recon-
struction methods (Cunliffe et al. 2016; Gillan et al.
2014; Olsoy et al. 2018), but is not necessarily a limita-
tion in a rangeland monitoring context. Maximum veg-
etation height is a convenient indicator to measure in the
field, but it may not hold any specific ecological value.
Drone-based photogrammetric point clouds can provide
thousands of measurements, enabling a more detailed
and synoptic look at vegetation heights, including the
ability to quantify observations per height bin, analyze
height variance, and calculate vegetation volume. This
technique will improve our ability to estimate biomass
and carbon storage (Cunliffe et al. 2016), parameterize
surface roughness for wind erosion modeling (Webb
et al. 2014), quantify fuels for prescribed or uncontrolled
fires (Leis and Morrison 2011), and assess the quality of
wildlife habitat (Olsoy et al. 2018). In NCD, for exam-
ple, greater sage-grouse habitat could be assessed with
drone-based vegetation structure data, including the
height, cover, and shape of sagebrush (Stiver et al.
2015).

Developing best practices

The workflow presented in the paper is just one of many
possible paths to estimate these indicator values, and
further work is needed to validate UAS-based tech-
niques for estimating I & M indicators in different
rangeland systems. Additionally, the choices of hard-
ware, software, image acquisition, and processing spec-
ifications are large and growing. Identifying drone-
imagery best practices could be accelerated with an
online workflow repository. Given the high interest in
this technology, a website like this could spur collabo-
ration and advancement in ways that published literature
alone cannot. A few existing protocol repositories in-
clude Protocols Exchange (https://www.nature.
com /p ro t o co l exchange ) and P ro t o co l s . IO
(http://protocols.io). Cunliffe and Anderson (2019), for
example, published a protocol to collect drone imagery

for biomass estimation in Protocols Exchange
(h t tps : / / do i .o rg /10 .1038 /p ro t ex .2018 .134) .
Alternatively, it could be advantageous to share
workflows through a website dedicated to rangeland I
& M (e.g . , the Landscape Toolbox, www.
landscapetoolbox.com), where drone-based monitoring
could be embedded within the larger context of range-
land data collection theory and field protocols.

Is drone monitoring worth the effort?

In large monitoring programs like AIM that collect a
diverse suite of data, drones will not replace most of the
field methods. Even from very high-resolution imagery,
it can be challenging to identify fine-scale features (e.g.,
grass and forb species identification, biological crusts)
and carry out qualitative assessments of land health (i.e.,
in situ multi-factor interpretations of ecosystem condi-
tion or trend). However, drone-imagery methods could
be used in a more supplemental capacity in which the
modes of integration can be customized to the specific
management needs of the locality. In the NCD, for
example, drone imagery could be collected to improve
estimates of bare-ground or cheatgrass cover in a post-
fire rehabilitation area. This could take the form of
expanding the size of existing monitoring plots, or
collecting imagery at new plots without field measures.

Drone-imagery-based indicators will complement oth-
er remote sensing efforts that “upscale” field data to
satellite imagery products (see Jones et al. 2018;
McCord et al. 2017; Xian et al. 2015). The upscaled
products have the advantage of covering entire field
offices but the indicators are limited to fractional cover
of a few general classes (bare-ground, woody, perennial
herb, etc). Drone imagery can observe features that
cannot be modeled to satellite imagery, such as canopy
gaps, vegetation heights, and identification of some
vegetation species.

Conclusion

Due to their low cost, ability to image dozens of hectares
per flight, and extreme portability, small UAS are likely
to become a standard tool for rangeland inventory and
monitoring. They will be integrated with existing field
efforts in order to observe larger andmore representative
portions of the landscape and to measure indicators not

Environ Monit Assess         (2020) 192:269 Page 17 of 20   269 

https://www.nature.com/protocolexchange
https://www.nature.com/protocolexchange
http://protocols.io
https://doi.org/10.1038/protex.2018.134
http://www.landscapetoolbox.com
http://www.landscapetoolbox.com


www.manaraa.com

easily measured on the ground. We demonstrated a
workflow to estimate three rangeland vegetation indica-
tors, reported agreement with their counterpart field
method, and provided recommendations for workflow
improvements. These methods could serve as a starting
point for other drone-based I & M efforts in sagebrush
steppe ecosystems. Despite the success of this and other
research demonstrations, we face a challenge in devel-
oping a suite of monitoring methods that are useful for
supporting management decisions (e.g., accurate, re-
peatable, and cost-effective) across varied rangeland
systems. The time is right to develop an online space
that facilitates the co-creation of repeatable workflows
and curates best practices for a variety of rangeland
indicators.
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